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Lateral interactions of charges in thin liquid films
and the Berezinskii-Kosterlitz-Thouless transition

Konstantin Kornev
The Institute for Problems in Mechanics, Russian Academy of Sciences, Prospect Vernadskogo 101, Moscow 117526, Russia
(Received 22 February 1999

At certain experimental conditions, foam films drawn from aqueous surfactant solutions can form highly
stable Newtonian films. We show that the origin of the film stability can be attributed to specific patterning of
surfactant molecules. Due to high dielectric contrast, the charges, together with their electrostatic images,
interact as needlelike charged polymers. Below a critical thickness, such quasipolyelectrolytes undergo the
Berezinskii-Kosterlitz-Thouless transition from a plasmalike state to a charge neutral one. In the latter, all the
charges are bound into dipole pairs. Inherent only in thin films, the effect leads to the surfactant condensation
into spots that cannot be observed on a single interface at the same surfactant concentration. We quantify a film
resistance to rupture in terms of a pore line tension and show that the corresponding energy barrier needed for
pore creation is much greater than the energy of thermal excitafi8t©663-651X99)04110-0

PACS numbgs): 82.70.Rr, 68.10-m, 81.65.Cf, 83.70-f

[. INTRODUCTION average distance between surfactant molecules is at least one
order greater than their linear size. In black spots, however,

Electrostatic forces constitute an important contribution tosurfactant molecules should be closely packed to form bilay-
stability of thin films drawn from electrolyte solutiofi$,2].  ers [7] or stratifying films [8]. Despite the contradictory
According to the classic Derjaguin-Landau-Verwey- points of view on mechanisms of film patternifig-12, and
Overbeek(DLVO) theory exploiting the idea of overlapped Stability [13—15, all research recognizes the fact that the
electrochemical double layers, electrostatic repulsion in thif@teéral interactions play a significant role here. _
films essentially depends on the thickness of double layers !N this paper we show that the electrostatic interactions

and, consequently, on the ionic strength of the mother solycould be responsible for film patterning if the film dielectric

tion. Based on the continuum Poisson-Boltzmann model, thlgonstantells mlil]ch_greatelt th/an thlat (I)If the enwronmeqé,
DLVO theory ignores the lateral fluctuations of charges in n particular, the inequalitye/€;>1 allows us to consider

the film. At the same time, the charge concentration mighplectrostatlc interactions as two-dimensional ones if the av-

vary in the film plane and charge coupling could be a Sig_erage distance between charges is greater than the film thick-

nificant mechanism of film patterniri@,3]. To distinguish a ness. Due to the high dielectric contrast, one may assume
m p - 9 .~ _that the long-range electrostatic field caused by a test ion
role of lateral correlations between charges from ordinar

X ) Yloes not penetrate through the film surfaces. Considering the
coupling of double layers, the effect is named the effect ol g rfaces as mirrors, the ions together with their images
charge discretenesd]. Since the first works on the effect, :ap pe treated as charged filaments forming two-dimensional
there have been numerous attempts to treat correlations Ry,ylomb gas. As the binding energy becomes comparable
Monte Carlo simulations and other density-functional theoith the thermal one, the Coulomb gas undergoes the
ries (see, for examplgp] and references thergirin particu-  Berezinskii-Kosterlitz-ThoulessBKT) transition [16—18

lar, as shown in numeric simulations, the lateral correlatiorresulting in ion pairing and, consequently, in surfactant or-
of charges leads to attraction between like-charged pléiles dering. We estimate the critical conditions for black spot
The cause of the appearance of conjoining pressure lies fimrmation and film rupture. The latter is obtained by assess-
inherent mobility of ions and, as a consequence, in selfing the energy of pore formation. The seemingly kindred
organizing configurations of the electrostatic field at eachproblem of electrostatic edge instability in lipid membranes
ion. Owing to the latter, thermal excitations result in specifichas been considered recently by Betterton and Brejrirggr
patterning of charges on opposing surfaces, adjusting posfFhe lipid membrane is modeled as a uniformly charged sur-
tive ions against negative ond$]. Another example in face of discontinuity, so that the film thickness plays no role
which the effects of long-wavelength correlated chargein the hole stability. In the range of salt concentrations suit-
density fluctuations are important is the free-standing soapble for the Debye-Htkel approximation, the electrostatic
film [3]. In such a film, surfactant molecules spread over theeffects are reduced to a renormalization of the bare edge
surfaces to form highly concentrated black spots. Notablyenergy[19]. The present work and the Betterton-Brenner pa-
the mother solution from which the stable soap film is drawnper do not overlap due to both physically different situations
may be considered as dilute; actually, the surfactant concerand nonlinearity involved here. In the problem under consid-
tration is a little bit greater than theritical micelle concen- eration,(i) the pore radius is comparable with the film thick-
tration (CMC) [3]. For example, the CMC of sodium dode- ness,(ii) the border charge is so large that it makes the
cyl sulphate at room temperature is abogf,c~ 8 mol/n?, Debye-Huckel approximation questionable, afiil) the sur-
which gives the following estimate for the average distanceface charges and the charges dissolved in the film are mobile.
between molecules~ (6 X 10%ccyc) ~Y3~10 8m. So, the  This triplet renders the approach of wdtk9] inapplicable in
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our case. It seems impossible to find explicit solution to thereplaced by its local value at the film midsurface @s
problem. Nevertheless, asymptotically solving the nonlineat= ¢(r,0). Accounting for this asymptotic equality, we split
Poisson-Boltzmann equation, we show that the electrostatihe Poisson problem for potentials on two Laplacian equa-
forges are responsible for film stabilization against pore fortions for upper and lower semispaces, both solutions being
mation. coupled atz=0 by the continuity condition for potentials
and by the following equation for normal derivativigs Eq.
Il. CHARGE COUPLING IN THIN FILMS (4) the terms of smaller order are negledted
WITH HIGH DIELECTRIC CONTRAST

. . I . . €. dP €_d¢ 4me
If a test charge is placed in the liquid at point (@, it A o+ P ~“eh 7z =— Fé(r).
creates an electrostatic field, which can be characterized by z+0 z=-0
solving the Poisson equation ®)
2 Equation (4) reveals two distinguishing asymptotic re-

A p+ — == @ 8(r)8(z—1zy), (1) gimes depending on the priority of the 'filrst and second terms
d € on the left-hand side. Introducing a critical length scétg,
for which both terms are on the same order of magnitude,
subject to the boundary conditions at the film surfaces, and carrying out the dimensional analysis of E5), one gets
] Ro~he/maxe. . Thus, in the range>R,, the second term
Ple=—n2+0=blz=-n2-0;  Blz=n2-0=ble=n2r0, (2 dominates the first one, while in the second regibrgr
” <Ry, the average potential can be found by solving the

€— —e , problem
0z z=—h/2+0 0z z=—h/2-0
A o 4mre s ©
0¢ 2 LT e 2
€~ €y = ’ (3)
9Z | ;20 9Z | _h210 Al
z= z=hiz Notably, the problem for the average potential is decou-
and at infinity pled and we arrive at the solution
2,52 2e
¢—0, r°+zo—oo, QDZ—E“”- 7
Hereeis the elementary charge, and the stepwise function
& has three values:=e, if point (r,z) lies within the film, The results of this analysis can be applied to free-standing
|z|<h/2, ande=¢;,i=*, if point (r,z) is considered in the soap films stabilized by ionic surfactants. As was mentioned

upper(+) or lower (—) semispaces outside the film. As was in the Introduction, if the surfactant concentration is a little
pointed out by Keldish20], who analyzed exact solution of bjt greater than CMC, the average distance between mol-
the problem, there are two regions distinguished by thecules could be greater than the film thickness, yet smaller
asymptotic behavior of the potential. For our objectives,thanhe. For example, so-calletiewtonblack films stabi-
however, his analysis is inapplicable. Therefore, we considelized by sodium dodecyl sulphate were identified as corre-
an asymptotic analysis of the problem suitable for any chargeponding to a typical thickness of a few nanometers. Ac-
distribution, not only for thes-like one. counting for the estimate~ (6X 10%%ccyc) ~Y*~10"8 m,
Concentrating attention on the long-range field, we intewe are persuaded that the electrostatic interactions in such
grate Eq.(1) over the film thickness. Then the average po-aqueous films can be described by the model of the two-
tential dimensional Coulomb gas. For the latter it is known that ions
collapse into dipoles as the temperature falls below a certain
<P=E iz $dz critical value[16,21,17,18 In contrast to the situation at
hJ-ne ordinary phase transitions in the three-dimensional case, col-
lective effects are unimportant for the appearance of an or-
satisfies the equation dered structure, but two-body interactions play the dominant
role. In particular, the temperature of the phase transition can
A +6_+@ €09 :_4_7765(r) be found by analyzing the partition function for a pair,
LT eh oz s h/240 eh oz b0 he ' exp(—2€’Inr/hekgT). The Boltzmann exponent is integrable
(4)  over two-dimensional space if and only if the inequality
e’/hekgT<1 holds. Hence, for surfactants, the film thick-
Far away from the charge/h>1, the potential in the ness plays the same role as temperature for the two-
film is almost constant. Indeed,ri§ denotes a length scale in dimensional Coulomb gas. One expects that at the critical
the lateral direction, the first term on the left-hand side of Eqfilm thicknessh.=e?/ ekgT, surfactant molecules condense
(1) can be neglected relative to the second due to the estinto a dense layers. For aqueous films at room temperature,
mate A, ¢/(9?¢l3z%)~0(h?/r3), —h/2<z<h/2. So, the the critical thickness is estimated ab,=e%ekgT
film potential depends on only parametrically. Therefore, ~10 3¥(80x 10 X 3x 10 ?)~4x10 °m, which is the
considering the behavior of the electrostatic field only ontypical thickness of the Newton black filmi8]. The exact
large scalest/h>1, the average potential in E¢}) can be  equation of stat¢21]
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( e? ) the problem(9)—(11) can be reformulated as
P=2chksg| T— /|, h>h (8)

2¢€hk, er

o d2u+1du_k 2sinh 12
connects the “spreading pressur®’and the total volume dr2 r dr = (ka)“sinhu(r) (12

concentration of chemicals capable of dissociatianThe
“spreading pressure” is inherent to lateral hydrodynamics,and the boundary conditions for E(.2) are

but it should be distinguished from the ordinary capillary

pressure. The latter is the difference between the pressure in du

the environment and in film liquid. The theory cannot predict dr =—2q, u(»)=0, (13
the form of this excess pressure. The equation of $8jtes r=1

coming from the scaling argumenfi21], but the thickness yherea is the pore radius anti denotes the number of
derivative of the excess free energy is a nontrivial quantityygnscreened charges at the pore wall. As was mentioned
|n21pI|C|tIy depending on the dimensionless parameteiyewtonian films exist near the critical conditions for the
e’/ehkgT. Though attractive due to their simplicity, the perezinskii-Kosterlitz-Thouless transition. At the near-
theories exploiting the Bjerrum model of ion pairii82]  critical conditions, parametey is greater than unity, while
cannot be applied to a description of the near-critical behanarameterka~ a(1.5% 10, Coy) Y2 is small. For ex-

ior of ions because they ignore specific screening of needleamme’ for sodium dodecy! sulphate we hawe~a/h,<1.

like dipoles[23]. As the thickness decreases below the criti- 54 \ye arrive at the so-called Manning condensation phe-
cal one, the problem becomes more complicated. Below thgomenon well known in polyelectrolytd@5]. Due to the
critical thickness, short-range correlations between ion%pecific conditionsg>1 andka<1, the magnitude of the

dominate in the dense phase, but they are beyond the limitgmensjonless potential near the pore is much greater than

tions of the approximation involved. This is why the numeric iy 5o that counterions pile up the pore to form an effective
simulations concerned with the classical Coulomb gas model. een for pore charge. This leads to a renormalized pore

[24] cannot be used directly for the problem of ion orderingparge. The phenomenon has received a great deal of atten-
in the films. So the problem of the determination of capillarysion in recent decadef26-30 but we are unaware of its
pressure and other temperature or thickness derivatives of ﬂ?fpplication to the problem of pore stability. Since the exact
excess free energy remains unresolved. Nevertheless, tQg)tion of the nonlinear Poisson-Boltzmann equation is very
mechanism of surfactant ordering via the BKT transition compicated31], our attention is concentrated on asymptotic
qould underlie the theory of formation of the Newtonian |awws of ion distribution in the region close to the patbe
films. Manning regiomand in the distant regiofthe Debye-Huakel
region. This asymptotic laws allow one to clarify the pecu-
Ill. A CHARGED PORE liarities of the BKT transition in the inhomogeneous case.

Assuming that a charged pore is present, we consider the
problem of thermodynamic stability of a free-standing film.
The only interactions that have to be considered are those Accounting for both inequalities;>1 and ka<1, Eq.
between the nonscreened pore charges and ions located a{i®) can be approximately written in the vicinity of the pore
distance greater tham Other contributions can be included as
in the pore line tension.

A. The Manning region of counterion condensation

Placing the origin of the coordinate at the pore center, we d?u; 1duy (ka)?
rewrite the equation for the average potential as a2 Ty T g expui(n). (14)
2
d_iJrEd_(’D:_Aﬂ_ 9) This is the problem for calculating the principal term
dR" RdR € u;(r) of the inner approximation 32] of the solution. Sub-

o - stituting the ansatg33
The volume charge densify is the sum of positive and g &3]

negative charge densities. The charge density will be as- p=u+2Inr, P=Inr
sumed to obey the Boltzmann distribution,

B into Eq. (14) and then multiplying the result byp/dP, one
p+=*tecgexp *eplkgT), (10 gets

p=p.+p_=—2ecsinh(ee/kgT) (11 d
dP

2 } ,de?
TR

dp
dp

with a constant, determined by the condition of chemical
equilibrium at infinity, wherep=0.

: . . . . This equation has two solutioh83],
Introducing dimensionless variables and functions as

[C+(ka)%eP]>~C¥2 ¢
ceth) f=— _cme [C—}—(ka)zep]llz—l—cllzzlna |f C>O
keT ' a' 97 hekgT " (15

_ eo(r) R 27N€E? C Y9n

k™'=(8me’co/ekgT) 7, and
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2 [C+ (ka)2eP]? r , Ue=doKo(§) =doKo(kar), (22
—— arctan————=In— if C<O.
v-C v-C Ru whereK(x) is the modified Bessel function arg is still
(16)  the undetermined apparent pore charge. The modified Bessel
function behaves like a logarithm for a small argument,

Here which suggests that the first approximation in the inner ex-
C=4(1—q)—(ka)2expu(). (17) pansion has the form
Ry is an arbitrary integration constant, and in Etp) we ~_ In@— Ceto(l 23
mean the principal branch of arctan. The solution applicabil- Ue™ o 2 GoCe+o(1), @3

ity has to be checked by making use of definitid®). Even ) ,

though the value ofi(1) is unknown in advance, due to the With Euler's constanCg=0.577 215.... On the other hand,
inequality g>1 one can select the necessary solution rightn the vicinity ofr =Ry, Eq.(18) can be written as

now, i.e., Eq.(16). Making use of the denotatiorz Kar

=—C/2, we rewrite Eq(16) in the form[34—-3§ up~-—2 In7+2 Inz+0o(1). (24)
ka\? r
—| 2 _
(22) r cosz(zlnRM>

ui(r)y=—In . (18 It is apparent that both asymptotic solutions overlap in the

vicinity of point r=R,,, whereupon

Then the boundary condition at the pore wall takes the

form Qo=2 and z=e™ CE. (25)
1 Substitutingz into the boundary condition at the pore
1—ztar<z|n R—) =q (190  wall, one gets the expression B, in the form
M

Rm=exp — e“Earctane®e[1—q]). 26
Accounting for the explicit equations for potential and m n [1=al) 26

pore charge, one can determine the number of counterions in For strongly charged poreg;—, the radius of the Man-

the Manning region as ning region tends to its asympto®Ry,,— R..=exp(me“E/2)
(ka)? (r ~16.407. In dimensional variables, the Manning region is
=7 f rdrexpu=ztanzinr/Ry)+q—1. esnmated as-16a, so that .the two—d|m¢n3|or)al theory.|s
1 applicable if the pore radius is about the film thickness. Since

(200 the Debye radius near the BKT transition is about the film
thicknessk™*~h,,, we are persuaded that the second term

In particular, one reveals that—1 charges are confined on the left-hand side of Eq5) is still unimportant.

in the layer of radiu}y, and screen the pore charge. So, the
critical radiusRy, can be treated as the border of the coun-
terion cloud in the Manning region. In the two-phase model
[25,26), these counterions are attributed to the surface ad- Traditionally, discussing the mechanism of film stability
sorbed ones. or membrane fusion, one determines the barrier energy of a

The inner solution{18) is in contradiction with the second hole [37—41]. In customary models, the energy consists of
boundary condition in Eqg13), so that we have to find an two parts: the first is the surface energy lost due to pore
outer expansion of the solution, which could obey the boundformation in the film,
ary condition at infinity.

C. The free energy of a pore

AF¢=—ma’y, (27
B. The Debye-Huckel region of charge screening and the second energy is attributed to the surface energy of
Following the method of matched asymptotic expansionghe pore bordefor to the edge energy for bilayers
[32], we rescale the variable as
AF|:+27Ta’)/| . (28)
é=kar
Here y is the film tension andy, is the line tension. If, as a

and consider the outer regicf>1 in which the potential crude estimate, we set~och and y=2c, whereo is the
diminishes,u(§)<1. In other words, one assumes that atqrdinary surface tension, the barriaF* = 72/ y and the
distances much greater than the Debye radius, the elec-  itical pore radiusa,=7,/y can be assessed asF*
trostatic coupling energy of mobile ions is smaller than their_ ;. ;12/2 anda,~h. %or ultrathin foam films these values

thermal energy. Thus the outer solution obeys the Debyeserye as upper estimates, because the line tension could be

Huckel equation, much smaller tharrh [39,40. The theory including only
) surface energies may fail in the case of charged pores. In-
d ueJr E %:u (&) 1) deed, formulas for the barriers do not take into account the
de2 & d¢ ey contributions from long-range forces, because the line ten-

sion is mostly dictated by short-range forces with a length
The solution of Eq(21) is well known, scale approximately equal to the intermolecular distance. On
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tension has been reached, the pore suddenly opens to the
larger radius. Further stretching decreases the energy, thus
favoring the film rupture. The critical conditions can be
found by analyzing the force balance for both pores corre-
sponding to the critical enerdfy,,

—x+1 -—-y+1
BRI (33

and by equating their energies,
—x?a+x—Inx=—-y?a+y—Iny, (34)

wherey is the dimensionless radius of the larger pore. The
system of transcendental equations can be solved by classical
methodg42], and has the following parametric solution:

. —1+¢e% 3
.'... X= _1+eS ’ ( 5)
0 + + {
1 2 . 3 4 5 1te?s 3
Y= i 89

FIG. 1. Energy as a function of pore radius for three film ten-
ions: dashed lineg=0.135; thi lid i =0.1; thick solid
sions _as ed lineg ; thin solid line,a ; thick soli S e S1]1—e®_gise
line, «=0.05.

(e27s_ 1)(e25_ 1)2 ’

(37

a=(e5—-1)

the other hand, if the pore is charged, the long-range electro-

static forces stabilize it against shrinkage. Substituting th&vhere parametesranges from minus infinity to zero. There-
asymptotic formula for the surface potential fore, the smaller radius changes from 1 to 2, while the larger

one grows from 2 to infinity. The dimensionless tension can
vary within the gap & a<exp(—2)~0.135 34. If the tension
is greater than eXp-2), the film, most likely, rips. Substitut-

ui(1)=—2In(ka)+In{4[e e+ (q—1)%]}, (29

into the electrostatic component of the free energy,

N
AFe=NkBTf u,(1)dN, (30)
0

ing a maximal value fore, one getchr:27ry|2exp(—2)/
ksTy. So, the critical radius is estimated asa
=4y exp(=2)/y. If we sety~ch and y=2g, the upper
bound for the allowed radius is assessedags=2h exp

(=2)=0.27h.
we obtain the radius-dependent part as

AF o= —2NksT In(ka). (31) V. CONCLUSIONS

Considering the mechanism of surfactant ordering in
lamellae, we focused on the specific case of a large dielectric
contrast, for example aqueous films in an air environment
fall into this class. If the surfactant solution is dilute, i.e., if
the average distance between the ions is much greater than
the film thickness, yet is smaller thahe/maxe., the
charges interact in lateral directions via the logarithmic po-
tential. In other words, placed in the film, the charges induce
the images, which in the principal approximation with re-
spect to small parameter ellcan be treated as charged

In Fig. 1 we plot two distinguishing regimes of film needles. Similar to the two-dimensional Coulomb gas, the
stretching. If the film tension is small enough, it is apparentopposite charges form dipole pairs as the temperature de-
that the energy grows as the pore radius diminishes, and thgeases. In this phenomenon, known as the Berezinskii-
greater the pore radius, the smaller the energy. BetweeKosterlitz-Thouless transition, two-body interactions are
these asymptotes, there is a metastable region with a barriegfominant. Remarkably, the film thickness plays the same
The barrier disappears as the film tension approaches thele here as the temperature in the Coulomb gas, so that the
critical value. Thereafter, no local minima occur and the onlycritical condition for the onset of surfactant ordering can be
one is at infinity. In principle, at different tensions the poresfound analytically ash.=e? ekgT. For aqueous films at
may have the same enerdy,, i.e., the energy attributed to room temperature this thickness is about the thickness of
different wells is the same. So, the scenario of film rupture isNewtonian film. For the latter, the surfactants are densely
as follows. Once nucleated, the pore grows under the filnpacked to form a bilayer, although typically Newtonian films
stretching until the tension on the pore reaches a criticadre drawn from dilute solutions with surfactant concentration
value corresponding to the enerfly. Just after the critical a little bit greater than the CMC. The fact that the thickness

Introducing dimensionless variables as
a=NkgTyl2mys and x=may /INkgT,
the total free energy is rewritten in the form

f=(AF¢+AF,+AF)/2Nkg T+ In(kNks T/ 7y,

=—x?a+x—Inx. (32
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of Newtonian films is practically unaffected by the electro-the charge independence of the critical pore radiis
lyte concentration [40] favors the mechanism of the ~2hexp(-2), provided that the edge energy is estimated as
Berezinskii-Kosterlitz-Thouless transition. Within the samey,~qgh. The corresponding barrier energy is much greater
limitations, the BKT theory explains the film stability. We than the thermal one\Fp,~27oh?~10%gT. Therefore,
showed that near the BKT transition the Debye radius ishe origin of the astonishing stability of the Newton black

about the film thickness, so that the charge of a pore is sigfjims lies in specific long-range surfactant interactions pre-
nificantly screened by counterions. Due to mathematicajenting films from pore creation.

analogy, the problem of charge reduction of a pore can be

considered similar to the Manning condensation in polyelec- ACKNOWLEDGMENTS
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