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Lateral interactions of charges in thin liquid films
and the Berezinskii-Kosterlitz-Thouless transition

Konstantin Kornev
The Institute for Problems in Mechanics, Russian Academy of Sciences, Prospect Vernadskogo 101, Moscow 117526, Ru

~Received 22 February 1999!

At certain experimental conditions, foam films drawn from aqueous surfactant solutions can form highly
stable Newtonian films. We show that the origin of the film stability can be attributed to specific patterning of
surfactant molecules. Due to high dielectric contrast, the charges, together with their electrostatic images,
interact as needlelike charged polymers. Below a critical thickness, such quasipolyelectrolytes undergo the
Berezinskii-Kosterlitz-Thouless transition from a plasmalike state to a charge neutral one. In the latter, all the
charges are bound into dipole pairs. Inherent only in thin films, the effect leads to the surfactant condensation
into spots that cannot be observed on a single interface at the same surfactant concentration. We quantify a film
resistance to rupture in terms of a pore line tension and show that the corresponding energy barrier needed for
pore creation is much greater than the energy of thermal excitations.@S1063-651X~99!04110-0#

PACS number~s!: 82.70.Rr, 68.10.2m, 81.65.Cf, 83.70.2f
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I. INTRODUCTION

Electrostatic forces constitute an important contribution
stability of thin films drawn from electrolyte solutions@1,2#.
According to the classic Derjaguin-Landau-Verwe
Overbeek~DLVO! theory exploiting the idea of overlappe
electrochemical double layers, electrostatic repulsion in t
films essentially depends on the thickness of double lay
and, consequently, on the ionic strength of the mother s
tion. Based on the continuum Poisson-Boltzmann model,
DLVO theory ignores the lateral fluctuations of charges
the film. At the same time, the charge concentration mi
vary in the film plane and charge coupling could be a s
nificant mechanism of film patterning@2,3#. To distinguish a
role of lateral correlations between charges from ordin
coupling of double layers, the effect is named the effect
charge discreteness@4#. Since the first works on the effec
there have been numerous attempts to treat correlation
Monte Carlo simulations and other density-functional the
ries ~see, for example,@5# and references therein!. In particu-
lar, as shown in numeric simulations, the lateral correlat
of charges leads to attraction between like-charged plates@6#.
The cause of the appearance of conjoining pressure lie
inherent mobility of ions and, as a consequence, in s
organizing configurations of the electrostatic field at ea
ion. Owing to the latter, thermal excitations result in spec
patterning of charges on opposing surfaces, adjusting p
tive ions against negative ones@6#. Another example in
which the effects of long-wavelength correlated char
density fluctuations are important is the free-standing s
film @3#. In such a film, surfactant molecules spread over
surfaces to form highly concentrated black spots. Nota
the mother solution from which the stable soap film is dra
may be considered as dilute; actually, the surfactant con
tration is a little bit greater than thecritical micelle concen-
tration ~CMC! @3#. For example, the CMC of sodium dode
cyl sulphate at room temperature is aboutcCMC;8 mol/m3,
which gives the following estimate for the average distan
between moleculesr̄;(631023cCMC)21/3;1028 m. So, the
PRE 601063-651X/99/60~4!/4371~6!/$15.00
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average distance between surfactant molecules is at leas
order greater than their linear size. In black spots, howe
surfactant molecules should be closely packed to form bil
ers @7# or stratifying films @8#. Despite the contradictory
points of view on mechanisms of film patterning@7–12#, and
stability @13–15#, all research recognizes the fact that t
lateral interactions play a significant role here.

In this paper we show that the electrostatic interactio
could be responsible for film patterning if the film dielectr
constante is much greater than that of the environment,e i .
In particular, the inequalitye/e i@1 allows us to consider
electrostatic interactions as two-dimensional ones if the
erage distance between charges is greater than the film th
ness. Due to the high dielectric contrast, one may ass
that the long-range electrostatic field caused by a test
does not penetrate through the film surfaces. Considering
film surfaces as mirrors, the ions together with their imag
can be treated as charged filaments forming two-dimensio
Coulomb gas. As the binding energy becomes compara
with the thermal one, the Coulomb gas undergoes
Berezinskii-Kosterlitz-Thouless~BKT! transition @16–18#
resulting in ion pairing and, consequently, in surfactant
dering. We estimate the critical conditions for black sp
formation and film rupture. The latter is obtained by asse
ing the energy of pore formation. The seemingly kindr
problem of electrostatic edge instability in lipid membran
has been considered recently by Betterton and Brenner@19#.
The lipid membrane is modeled as a uniformly charged s
face of discontinuity, so that the film thickness plays no ro
in the hole stability. In the range of salt concentrations su
able for the Debye-Hu¨ckel approximation, the electrostati
effects are reduced to a renormalization of the bare e
energy@19#. The present work and the Betterton-Brenner p
per do not overlap due to both physically different situatio
and nonlinearity involved here. In the problem under cons
eration,~i! the pore radius is comparable with the film thic
ness,~ii ! the border charge is so large that it makes
Debye-Hückel approximation questionable, and~iii ! the sur-
face charges and the charges dissolved in the film are mo
This triplet renders the approach of work@19# inapplicable in
4371 © 1999 The American Physical Society
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4372 PRE 60KONSTANTIN KORNEV
our case. It seems impossible to find explicit solution to
problem. Nevertheless, asymptotically solving the nonlin
Poisson-Boltzmann equation, we show that the electros
forces are responsible for film stabilization against pore f
mation.

II. CHARGE COUPLING IN THIN FILMS
WITH HIGH DIELECTRIC CONTRAST

If a test charge is placed in the liquid at point (0,0,z0), it
creates an electrostatic field, which can be characterize
solving the Poisson equation

D'f1
]2f

]z2
52

4pe

«
d~r !d~z2z0!, ~1!

subject to the boundary conditions at the film surfaces,

fuz52h/2105fuz52h/220 ; fuz5h/2205fuz5h/210 , ~2!

e
]f

]z U
z52h/210

5e2

]f

]z U
z52h/220

;

e
]f

]z U
z5h/220

5e1

]f

]z U
z5h/210

, ~3!

and at infinity

f°0, r 21z2°`.

Heree is the elementary charge, and the stepwise func
« has three values:«5e, if point (r ,z) lies within the film,
uzu,h/2, and«5e i , i 56, if point (r ,z) is considered in the
upper~1! or lower ~2! semispaces outside the film. As wa
pointed out by Keldish@20#, who analyzed exact solution o
the problem, there are two regions distinguished by
asymptotic behavior of the potential. For our objectiv
however, his analysis is inapplicable. Therefore, we cons
an asymptotic analysis of the problem suitable for any cha
distribution, not only for thed-like one.

Concentrating attention on the long-range field, we in
grate Eq.~1! over the film thickness. Then the average p
tential

w5
1

h E2h/2

h/2

f dz

satisfies the equation

D'w1
e1

eh

]f

]z U
z5h/210

2
e2

eh

]f

]z U
z52h/220

52
4pe

he
d~r !.

~4!

Far away from the charge,r /h@1, the potential in the
film is almost constant. Indeed, ifr 0 denotes a length scale i
the lateral direction, the first term on the left-hand side of E
~1! can be neglected relative to the second due to the
mate D'f/(]2f/]z2);O(h2/r 0

2), 2h/2,z,h/2. So, the
film potential depends onr only parametrically. Therefore
considering the behavior of the electrostatic field only
large scales,r /h@1, the average potential in Eq.~4! can be
e
r

tic
-
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n

e
,
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e

-
-

.
ti-

replaced by its local value at the film midsurface asw`

5f(r ,0). Accounting for this asymptotic equality, we sp
the Poisson problem for potentials on two Laplacian eq
tions for upper and lower semispaces, both solutions be
coupled atz50 by the continuity condition for potential
and by the following equation for normal derivatives@in Eq.
~4! the terms of smaller order are neglected#:

D'f1H e1

eh

]f

]z U
z10

2
e2

eh

]f

]z U
z520

J 52
4pe

he
d~r !.

~5!

Equation ~4! reveals two distinguishing asymptotic re
gimes depending on the priority of the first and second te
on the left-hand side. Introducing a critical length scale,R0,
for which both terms are on the same order of magnitu
and carrying out the dimensional analysis of Eq.~5!, one gets
R0;he/maxe6 . Thus, in the ranger @R0 , the second term
dominates the first one, while in the second region,h!r
!R0 , the average potential can be found by solving t
problem

D'w52
4pe

he
d~r !. ~6!

Notably, the problem for the average potential is deco
pled and we arrive at the solution

w52
2e

he
ln r . ~7!

The results of this analysis can be applied to free-stand
soap films stabilized by ionic surfactants. As was mention
in the Introduction, if the surfactant concentration is a lit
bit greater than CMC, the average distance between m
ecules could be greater than the film thickness, yet sma
than he. For example, so-calledNewtonblack films stabi-
lized by sodium dodecyl sulphate were identified as cor
sponding to a typical thickness of a few nanometers. A
counting for the estimater̄;(631023cCMC)21/3;1028 m,
we are persuaded that the electrostatic interactions in s
aqueous films can be described by the model of the t
dimensional Coulomb gas. For the latter it is known that io
collapse into dipoles as the temperature falls below a cer
critical value @16,21,17,18#. In contrast to the situation a
ordinary phase transitions in the three-dimensional case,
lective effects are unimportant for the appearance of an
dered structure, but two-body interactions play the domin
role. In particular, the temperature of the phase transition
be found by analyzing the partition function for a pa
exp(22e2 ln r/hekBT). The Boltzmann exponent is integrab
over two-dimensional space if and only if the inequal
e2/hekBT,1 holds. Hence, for surfactants, the film thic
ness plays the same role as temperature for the t
dimensional Coulomb gas. One expects that at the crit
film thicknesshcr5e2/ekBT, surfactant molecules condens
into a dense layers. For aqueous films at room tempera
the critical thickness is estimated ashcr5e2/ekBT
;10238/(8031021133310221);431029 m, which is the
typical thickness of the Newton black films@3#. The exact
equation of state@21#
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P52chkBS T2
e2

2ehkB
D , h.hcr ~8!

connects the ‘‘spreading pressure’’P and the total volume
concentration of chemicals capable of dissociation,c. The
‘‘spreading pressure’’ is inherent to lateral hydrodynami
but it should be distinguished from the ordinary capilla
pressure. The latter is the difference between the pressu
the environment and in film liquid. The theory cannot pred
the form of this excess pressure. The equation of state~8! is
coming from the scaling arguments@21#, but the thickness
derivative of the excess free energy is a nontrivial quan
implicitly depending on the dimensionless parame
e2/ehkBT. Though attractive due to their simplicity, th
theories exploiting the Bjerrum model of ion pairing@22#
cannot be applied to a description of the near-critical beh
ior of ions because they ignore specific screening of nee
like dipoles@23#. As the thickness decreases below the cr
cal one, the problem becomes more complicated. Below
critical thickness, short-range correlations between i
dominate in the dense phase, but they are beyond the lim
tions of the approximation involved. This is why the nume
simulations concerned with the classical Coulomb gas mo
@24# cannot be used directly for the problem of ion orderi
in the films. So the problem of the determination of capilla
pressure and other temperature or thickness derivatives o
excess free energy remains unresolved. Nevertheless
mechanism of surfactant ordering via the BKT transiti
could underlie the theory of formation of the Newtonia
films.

III. A CHARGED PORE

Assuming that a charged pore is present, we consider
problem of thermodynamic stability of a free-standing film
The only interactions that have to be considered are th
between the nonscreened pore charges and ions located
distance greater thanh. Other contributions can be include
in the pore line tension.

Placing the origin of the coordinate at the pore center,
rewrite the equation for the average potential as

d2w

dR2 1
1

R

dw

dR
52

4pr

e
. ~9!

The volume charge densityr is the sum of positive and
negative charge densities. The charge density will be
sumed to obey the Boltzmann distribution,

r656ec0 exp~7ew/kBT!, ~10!

r5r11r2522ec0 sinh~ew/kBT! ~11!

with a constantc0 determined by the condition of chemic
equilibrium at infinity, wherew50.

Introducing dimensionless variables and functions as

u5
ew~r !

kBT
, r 5

R

a
, q5

2pNe2

hekBT
,

k215~8pe2c0 /ekBT!21/2,
,
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the problem~9!–~11! can be reformulated as

d2u

dr2
1

1

r

du

dr
5~ka!2 sinhu~r ! ~12!

and the boundary conditions for Eq.~12! are

du

dr U
r 51

522q, u~`!50, ~13!

where a is the pore radius andN denotes the number o
nonscreened charges at the pore wall. As was mentio
Newtonian films exist near the critical conditions for th
Berezinskii-Kosterlitz-Thouless transition. At the nea
critical conditions, parameterq is greater than unity, while
parameterka;a(1.531025hcrcCMC)1/2 is small. For ex-
ample, for sodium dodecyl sulphate we haveka;a/hcr,1.

So we arrive at the so-called Manning condensation p
nomenon well known in polyelectrolytes@25#. Due to the
specific conditionsq.1 and ka,1, the magnitude of the
dimensionless potential near the pore is much greater
unity so that counterions pile up the pore to form an effect
screen for pore charge. This leads to a renormalized p
charge. The phenomenon has received a great deal of a
tion in recent decades@26–30# but we are unaware of its
application to the problem of pore stability. Since the ex
solution of the nonlinear Poisson-Boltzmann equation is v
complicated@31#, our attention is concentrated on asympto
laws of ion distribution in the region close to the pore~the
Manning region! and in the distant region~the Debye-Hu¨ckel
region!. This asymptotic laws allow one to clarify the pec
liarities of the BKT transition in the inhomogeneous case

A. The Manning region of counterion condensation

Accounting for both inequalitiesq.1 and ka!1, Eq.
~12! can be approximately written in the vicinity of the po
as

d2ui

dr2
1

1

r

dui

dr
5

~ka!2

2
expui~r !. ~14!

This is the problem for calculating the principal ter
ui(r ) of the inner approximation@32# of the solution. Sub-
stituting the ansatz@33#

p5u12 ln r , P5 ln r

into Eq. ~14! and then multiplying the result bydp/dP, one
gets

d

dP F dp

dPG2

5~ka!2
dep

dP
.

This equation has two solutions@33#,

C21/2ln
@C1~ka!2ep#1/22C1/2

@C1~ka!2ep#1/21C1/25 ln
r

RM
if C.0

~15!

and
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2

A2C
arctan

@C1~ka!2ep#1/2

A2C
5 ln

r

RM
if C,0.

~16!

Here

C54~12q!2~ka!2 expu~1!. ~17!

RM is an arbitrary integration constant, and in Eq.~16! we
mean the principal branch of arctan. The solution applica
ity has to be checked by making use of definition~17!. Even
though the value ofu(1) is unknown in advance, due to th
inequality q.1 one can select the necessary solution ri
now, i.e., Eq. ~16!. Making use of the denotationz
5A2C/2, we rewrite Eq.~16! in the form @34–36#

ui~r !52 lnF S ka

2zD
2

r 2 cos2S z ln
r

RM
D G . ~18!

Then the boundary condition at the pore wall takes
form

12z tanS z ln
1

RM
D5q. ~19!

Accounting for the explicit equations for potential an
pore charge, one can determine the number of counterion
the Manning region as

rM5
~ka!2

4 E
1

r

r dr expu5z tan~z ln r /RM !1q21.

~20!

In particular, one reveals thatq21 charges are confine
in the layer of radiusRM and screen the pore charge. So, t
critical radiusRM can be treated as the border of the cou
terion cloud in the Manning region. In the two-phase mo
@25,26#, these counterions are attributed to the surface
sorbed ones.

The inner solution~18! is in contradiction with the secon
boundary condition in Eqs.~13!, so that we have to find an
outer expansion of the solution, which could obey the bou
ary condition at infinity.

B. The Debye-Hückel region of charge screening

Following the method of matched asymptotic expansio
@32#, we rescale the variable as

j5kar

and consider the outer regionj.1 in which the potential
diminishes,u(j)!1. In other words, one assumes that
distances much greater than the Debye radius,k21, the elec-
trostatic coupling energy of mobile ions is smaller than th
thermal energy. Thus the outer solution obeys the Deb
Hückel equation,

d2ue

dj2
1

1

j

due

dj
5ue~j!. ~21!

The solution of Eq.~21! is well known,
l-

t

e

in

-
l

d-

-

s

t

r
e-

ue5q0K0~j!5q0K0~kar!, ~22!

whereK0(x) is the modified Bessel function andq0 is still
the undetermined apparent pore charge. The modified Be
function behaves like a logarithm for a small argume
which suggests that the first approximation in the inner
pansion has the form

ue'2q0 ln
kar

2
2q0CE1o~1!, ~23!

with Euler’s constantCE50.577 215... . On the other hand
in the vicinity of r 5RM , Eq. ~18! can be written as

ui'22 ln
kar

2
12 lnz1o~1!. ~24!

It is apparent that both asymptotic solutions overlap in
vicinity of point r 5RM , whereupon

q052 and z5e2CE. ~25!

Substitutingz into the boundary condition at the por
wall, one gets the expression forRM in the form

Rm5exp~2eCE arctaneCE@12q# !. ~26!

For strongly charged pores,q→`, the radius of the Man-
ning region tends to its asymptoteRM→R`5exp(peCE/2)
;16.407. In dimensional variables, the Manning region
estimated as;16a, so that the two-dimensional theory
applicable if the pore radius is about the film thickness. Sin
the Debye radius near the BKT transition is about the fi
thickness,k21;hcr , we are persuaded that the second te
on the left-hand side of Eq.~5! is still unimportant.

C. The free energy of a pore

Traditionally, discussing the mechanism of film stabili
or membrane fusion, one determines the barrier energy
hole @37–41#. In customary models, the energy consists
two parts: the first is the surface energy lost due to p
formation in the film,

DFs52pa2g, ~27!

and the second energy is attributed to the surface energ
the pore border~or to the edge energy for bilayers!,

DFl512pag l . ~28!

Hereg is the film tension andg l is the line tension. If, as a
crude estimate, we setg l;sh and g52s, wheres is the
ordinary surface tension, the barrierDF* 5pg l

2/g and the
critical pore radiusacr5g l /g can be assessed asDF*
;psh2/2 andacr;h. For ultrathin foam films these value
serve as upper estimates, because the line tension cou
much smaller thansh @39,40#. The theory including only
surface energies may fail in the case of charged pores.
deed, formulas for the barriers do not take into account
contributions from long-range forces, because the line t
sion is mostly dictated by short-range forces with a len
scale approximately equal to the intermolecular distance.
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the other hand, if the pore is charged, the long-range elec
static forces stabilize it against shrinkage. Substituting
asymptotic formula for the surface potential,

ui~1!522 ln~ka!1 ln$4@e22CE1~q21!2#%, ~29!

into the electrostatic component of the free energy,

DFe5NkBTE
0

N

ui~1!dN, ~30!

we obtain the radius-dependent part as

DFe522NkBT ln~ka!. ~31!

Introducing dimensionless variables as

a5NkBTg/2pg1
2 and x5pag l /NkBT,

the total free energy is rewritten in the form

f 5~DFs1DFl1DFe!/2NkBT1 ln~kNkBT/pg l !

52x2a1x2 ln x. ~32!

In Fig. 1 we plot two distinguishing regimes of film
stretching. If the film tension is small enough, it is appar
that the energy grows as the pore radius diminishes, and
greater the pore radius, the smaller the energy. Betw
these asymptotes, there is a metastable region with a ba
The barrier disappears as the film tension approaches
critical value. Thereafter, no local minima occur and the o
one is at infinity. In principle, at different tensions the por
may have the same energy,f cr , i.e., the energy attributed t
different wells is the same. So, the scenario of film rupture
as follows. Once nucleated, the pore grows under the
stretching until the tension on the pore reaches a crit
value corresponding to the energyf cr . Just after the critical

FIG. 1. Energy as a function of pore radius for three film te
sions: dashed line,a50.135; thin solid line,a50.1; thick solid
line, a50.05.
o-
e

t
he
en
er.
he
y

s

al

tension has been reached, the pore suddenly opens to
larger radius. Further stretching decreases the energy,
favoring the film rupture. The critical conditions can b
found by analyzing the force balance for both pores cor
sponding to the critical energyf cr ,

2x11

x2 5
2y11

y2 , ~33!

and by equating their energies,

2x2a1x2 ln x52y2a1y2 ln y, ~34!

wherey is the dimensionless radius of the larger pore. T
system of transcendental equations can be solved by clas
methods@42#, and has the following parametric solution:

x5
211e2s

211es , ~35!

y5
211e2s

211es e2s, ~36!

a5~es21!
es2e2s112e2s2s1ses

~e22s21!~e2s21!2 , ~37!

where parameters ranges from minus infinity to zero. There
fore, the smaller radius changes from 1 to 2, while the lar
one grows from 2 to infinity. The dimensionless tension c
vary within the gap 0<a<exp(22)'0.135 34. If the tension
is greater than exp~22!, the film, most likely, rips. Substitut-
ing a maximal value fora, one getsNcr52pg l

2exp(22)/
kBTg. So, the critical radius is estimated asacr
54g l exp(22)/g. If we set g l'sh and g'2s, the upper
bound for the allowed radius is assessed asacr'2h exp
(22)'0.27h.

IV. CONCLUSIONS

Considering the mechanism of surfactant ordering
lamellae, we focused on the specific case of a large dielec
contrast, for example aqueous films in an air environm
fall into this class. If the surfactant solution is dilute, i.e.,
the average distance between the ions is much greater
the film thickness, yet is smaller thanhe/maxe6 , the
charges interact in lateral directions via the logarithmic p
tential. In other words, placed in the film, the charges indu
the images, which in the principal approximation with r
spect to small parameter 1/e can be treated as charge
needles. Similar to the two-dimensional Coulomb gas,
opposite charges form dipole pairs as the temperature
creases. In this phenomenon, known as the Berezins
Kosterlitz-Thouless transition, two-body interactions a
dominant. Remarkably, the film thickness plays the sa
role here as the temperature in the Coulomb gas, so tha
critical condition for the onset of surfactant ordering can
found analytically ashcr5e2/ekBT. For aqueous films a
room temperature this thickness is about the thickness
Newtonian film. For the latter, the surfactants are dens
packed to form a bilayer, although typically Newtonian film
are drawn from dilute solutions with surfactant concentrat
a little bit greater than the CMC. The fact that the thickne

-
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of Newtonian films is practically unaffected by the electr
lyte concentration @40# favors the mechanism of th
Berezinskii-Kosterlitz-Thouless transition. Within the sam
limitations, the BKT theory explains the film stability. W
showed that near the BKT transition the Debye radius
about the film thickness, so that the charge of a pore is
nificantly screened by counterions. Due to mathemat
analogy, the problem of charge reduction of a pore can
considered similar to the Manning condensation in polyel
trolytes, whereupon, at distances much greater than the
bye length, the counterions are amassed at the pore to re
the bare line density of charges, 2paNe, to the apparent
densityahekBT/e. This saturation effect manifests itself i
h
y

.

.

s
g-
al
e
-
e-

uce

the charge independence of the critical pore radiusacr
'2h exp(22), provided that the edge energy is estimated
g l'sh. The corresponding barrier energy is much grea
than the thermal one,DFbar;2pshcr

2 ;103kBT. Therefore,
the origin of the astonishing stability of the Newton bla
films lies in specific long-range surfactant interactions p
venting films from pore creation.
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